If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2-9.8t+73.5=0
a = -4.9; b = -9.8; c = +73.5;
Δ = b2-4ac
Δ = -9.82-4·(-4.9)·73.5
Δ = 1536.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9.8)-\sqrt{1536.64}}{2*-4.9}=\frac{9.8-\sqrt{1536.64}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9.8)+\sqrt{1536.64}}{2*-4.9}=\frac{9.8+\sqrt{1536.64}}{-9.8} $
| k/28=11 | | 29=c/19 | | w+10=3w | | 5x+23=4x+6 | | 2/8h=9 | | q+63=994 | | k-54=15 | | 6x-23=8x-17=3x-1=180 | | 6x^2/x=19 | | 3x+5x+18=90 | | 1/2k=418 | | 2x+6+6+3x-8=1 | | z-7=-2+2z | | 9x-23=6x+7 | | 8=g-39 | | 21x+34=14x-41 | | 4v^2-2v-3=0 | | 9x+8=15x-46 | | k-9=74 | | 4(3w+5)-2w=70 | | 8x+12+12x+8=180 | | 16=j-9 | | 4*b=16 | | P=100-5x0 | | x*0.15=26312 | | 1xx3x=4x | | g-46=2 | | 3.7y–10.6=6.2y+19.4 | | x+7=-16(-30) | | r+28=75 | | x*0.15=150 | | 5(3x)=2 |